氧化镓材料潜力
氧化镓(β-Ga2O3)作为继GaN和SiC之后的下一代超宽禁带半导体材料,其禁带宽度约为4.8 eV,理论击穿场强为8 MV/cm,电子迁移率为300 cm2/Vs,因此β-Ga2O3具有4倍于GaN,10倍于SiC以及3444倍于Si的Baliga技术指标。同时通过熔体法(生长蓝宝石衬底的方法)可以获得低缺陷密度(103~104 cm-2)的大尺寸β-Ga2O3衬底,使得β-Ga2O3器件的成本相比于GaN以及SiC器件更低。
随着高铁、电动汽车以及高压电网输电系统的快速发展,全世界急切的需要具有更高转换效率的高压大功率电子电力器件。β-Ga2O3功率器件在与GaN和SiC相同的耐压情况下,导通电阻更低、功耗更小、更耐高温、能够极大地节约上述高压器件工作时的电能损失,因此Ga2O3提供了一种更高效更节能的选择。
氧化镓材料潜力
氧化镓(β-Ga2O3)作为继GaN和SiC之后的下一代超宽禁带半导体材料,其禁带宽度约为4.8 eV,理论击穿场强为8 MV/cm,电子迁移率为300 cm2/Vs,因此β-Ga2O3具有4倍于GaN,10倍于SiC以及3444倍于Si的Baliga技术指标。同时通过熔体法(生长蓝宝石衬底的方法)可以获得低缺陷密度(103~104 cm-2)的大尺寸β-Ga2O3衬底,使得β-Ga2O3器件的成本相比于GaN以及SiC器件更低。
随着高铁、电动汽车以及高压电网输电系统的快速发展,全世界急切的需要具有更高转换效率的高压大功率电子电力器件。β-Ga2O3功率器件在与GaN和SiC相同的耐压情况下,导通电阻更低、功耗更小、更耐高温、能够极大地节约上述高压器件工作时的电能损失,因此Ga2O3提供了一种更高效更节能的选择。