金属钪比起钇和镧系元素来,由于离子半径特别小,氢氧化物的碱性也特别弱,因此,钪和稀土元素混在一起时,用氨(或极稀的碱)处理,钪将首先析出,故应用“分级沉淀”法可比较容易地把它从稀土元素中分离出来。氢氧化铟另一种方法是利用硝酸盐的分极分解进行分离,由于硝酸钪容易分解,从而达到分离的目的。氢氧化铟粉末用电解的方法可制得金属钪,在炼钪时将ScCl3、KCl、LiCl共熔,以熔融的锌为阴极电解之,使钪在锌极上析出,然后将锌蒸去可得金属钪。
使金属镓在室温或加热的条件下与硫酸反应即可得到硫酸镓的水溶液。氢氧化铟或者将新制得的氢氧化镓Ga(OH)3沉淀溶于2mol/L的硫酸溶液中也可制得硫酸镓的水溶液。将这种硫酸镓水溶液在60~70℃的温度下进行浓缩,将所得的浓溶液冷却,向其中加入乙醇/乙醚混合物,即可制得十八水硫酸镓Ga2(SO4)3·18H2O的八面体结晶。白山氢氧化铟反应中所用的氢氧化镓沉淀可用向三价镓盐的水溶液加氨水制得。为了使生成的氢氧化镓沉淀不致发生溶解,应注意不要使氨水加入过量。为了易于过滤,在沉定过程中可适当加热。
氧化镓(β-Ga2O3)作为继GaN和SiC之后的下一代超宽禁带半导体材料,其禁带宽度约为4.8 eV,理论击穿场强为8 MV/cm,电子迁移率为300 cm2/Vs,因此β-Ga2O3具有4倍于GaN,10倍于SiC以及3444倍于Si的Baliga技术指标。氢氧化铟同时通过熔体法可以获得低缺陷密度的大尺寸β-Ga2O3衬底,使得β-Ga2O3器件的成本相比于GaN以及SiC器件更低。随着高铁、电动汽车以及高压电网输电系统的快速发展,全世界急切的需要具有更高转换效率的高压大功率电子电力器件。白山氢氧化铟β-Ga2O3功率器件在与GaN和SiC相同的耐压情况下,导通电阻更低、功耗更小、更耐高温、能够极大地节约上述高压器件工作时的电能损失,因此Ga2O3提供了一种更高效更节能的选择。
生产工艺技术及设备经过多年来的研究和生产实践后,目前从含钪原料中提取Sc2O3的工艺技术有下列几种方法:①萃取法。氢氧化铟生产中使用较多,其具有产量大、质量好、回收率高、成本低及生产中可连续作业的特点。②离子交换法。生产中也常被采用。其具有产量小,纯度较高,收率较低,成本较高及生产周期长的特点。③萃淋树脂色层法。其具有生产周期短,纯度高,收率高和成本低的特点。④液膜萃取法。高纯氢氧化铟它是膜分离与液液萃取相结合的一种新型分离技术。
氧化镓是一种新兴的功率半导体材料,其禁带宽度大于硅,氮化镓和碳化硅,在高功率应用领域的应用优势愈加明显。氢氧化铟但氧化镓不会取代SiC和GaN,后两者是硅之后的下一代主要半导体材料。氢氧化铟粉末氧化镓更有可能在扩展超宽禁带系统可用的功率和电压范围方面发挥作用。而最有希望的应用可能是电力调节和配电系统中的高压整流器,如电动汽车和光伏太阳能系统。但是,在成为电力电子产品的主要竞争者之前,氧化镓仍需要开展更多的研发和推进工作,以克服自身的不足。