对于溅射类镀膜:可以简单理解为利用电子或高能激光轰击靶材,并使表面组分以原子团或离子形式被溅射出来,并且终沉积在基片表面,经历成膜过程,终形成薄膜。氧化铟溅射镀膜又分为很多种,总体看,与蒸发镀膜的不同点在于溅射速率将成为主要参数之。阿拉善盟氧化铟溅射镀膜中的激光溅射镀膜pld,组分均匀性容易保持,而原子尺度的厚度均匀性相对较差(因为是脉冲溅射),晶向(外沿)生长的控制也比较般。以pld为例,因素主要有:靶材与基片的晶格匹配程度、镀膜氛围(低压气体氛围)、基片温度、激光器功率、脉冲频率、溅射时间。
金属之间有生成合金的趋向。合金便是不同金属间的互溶现象。氧化铟一般金属间构成合金需求很高的温度。但有些金属间并非需求高温,例如水 银在常温下就能够与多种金属构成合金。镓也有这种功用,由于家的熔点很低,在30摄氏度就成为了液态,这种液态的镓就能够与其他金属生成合金,也便是对其他金属有溶解的效果,对其他金属形成腐蚀。氧化铟粉末所以镓不能装在金属容器中。
金属铋粉主要用于制造易熔合金,熔点范围是47~262℃,最常用的是铋同铅、锡、锑、铟等金属组成的合金,用于消防装置、自动喷水器、锅炉的安全塞,一旦发生火灾时,一些水管的活塞会“自动”熔化,喷出水来。氧化铟在消防和电气工业上,用作自动灭火系统和电器保险丝、焊锡。铋合金具有凝固时不收缩的特性,用于铸造印刷铅字和高精度铸型。氧化铟粉末碳酸氧铋和硝酸氧铋用于治疗皮肤损伤和肠胃病。用于制低熔合金,在消防和电气安全装置上有特殊的重要性,在分析化学中用于检测Mn。铋可制低熔点合金,用于自动关闭器或活字合金中。
几年来,科学家们也一直致力于研究这种材料氧化镓(ga2O3)。氧化铟这种新型半导体的带隙相对较大,为4.8电子伏,这意味着在电力电子领域,特别是在高电压被转换成低电压的情况下,氧化镓至少部分地可以超过当前恒星的阶段:硅(Si)、碳化硅(SiC)和氮化镓(GaN)。阿拉善盟高纯氧化铟粉末到目前为止,SiC是唯一一种不易产生明显缺陷的基体,但外延生长速度相对较慢。对于氮化镓来说,仍然没有有效的方法来生产大体积的合适的单晶。因此,它被沉积到像蓝宝石或硅这样的外来基板上,但它们的不同晶格常数导致了外延过程中的错位。
氧化镓的导热性能较差,但其禁带宽度(4.9eV)超过碳化硅(约3.4eV),氮化镓(约3.3eV)和硅(1.1eV)的。氧化铟由于禁带宽度可衡量使电子进入导通状态所需的能量。采用宽禁带材料制成的系统可以比由禁带较窄材料组成的系统更薄、更轻,并且能应对更高的功率,有望以低成本制造出高耐压且低损失的功率元件。高纯氧化铟粉末宽禁带允许在更高的温度下操作,从而减少对庞大的冷却系统的需求。